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Abstract— This paper presents two techniques for short-term load forecasting (STLF) based on Artificial Neural 
Networks method (ANN). These techniques are the nonlinear auto regressive with external input (NARX) and 
radial basis function (RBF). The results from both methods are compared in order to attain minimum percentage 
errors. Input data implies weather factors such as temperature and humidity. A comparison between the two 
techniques shows that RBF method has a better performance that NARX method in short periods training whereas 
NARX has the advantage in long periods training. The comparison between hourly actual and forecasted load 
readings shows a reasonable normalized mean square error (NMSE) with minimum values in summer: 3.9 % for 
NARX and 3.5% for RBF, and in winter: 3.5% for NARX and 3.47% for RBF. Results show that the minimum 
error is achieved by using five training days for summer and nine days for winter. 
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I. INTRODUCTION 

The STLF is a process to predict the electric load in terms of hours and days ahead. It is 
basically used to decide whether an extra power generation should be installed to meet the 
demand or not. The demand can be met by installing new generation plants or by exchanging 
power from neighboring countries. Load forecasting is also used to decide whether the output 
of the running generation units should be decreased or stopped. In order to predict the electric 
demand of any power system, it is important to investigate the load pattern and the factors 
that affect the demand [1]. In Jordan's case, a robust STLF model needs to be prepared as a 
first step for power system operation and planning. The previous models of STLF used by 
National Electric Power Company (NEPCO) in Jordan are based on growth rate technique 
which is not accurate and reliable; thus it is necessary to have a direct and reliable model to 
predict the load series in terms of hours and days. In this paper, two ANN techniques (NARX 
and radial basis) are employed to predict the STLF for Jordan network. 
The implementation of ANN in STLF was detailed by several researchers elsewhere in the 
world as follows: Syed and Hawary [2] presented three advanced ANN architectures to apply 
STLF for Nova Costa region, in Canada; and the results are compared with Feed Forward 
Neural Network (FFN). The application of these architectures provides large improvements 
over FFN. In [3], Tee, Judith and Ellis introduced ANN approach for hourly load forecasting 
based on load data obtained from a previous day. Historical load data for the ISO-New 
England control area was used to test the proposed model. As a result, the percentage error 
was found to be 0.43% which is better than percentages obtained from previous models. In 
[4], a review study for STLF techniques and their accuracy is applied on a small scale such as 
office buildings based on linear and non-linear models which serve as a substantial solution 
for smart grid economic dispatch problem. Elias and others [5] conducted STLF for Spain 
based on time series and regression methods using statistical approaches and artificial 
intelligence methods (AI). Primitive and derived weather variables are used in their study as 
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an exogenous input in addition to monthly and weakly seasonality. Inputs are investigated and 
used to build ANN forecasting models. Xie and others [6] presented a brief analysis for the 
behavior and architecture of NARX, which was tested by using a real data set based on 
vibration data from a CO2 compressor. NARX approach outperforms the conventional neural 
networks such as feed forward time delay neural network (TDNN). Xia and others [7] 
presented three ANN models for STLF of electric power. In their study networks were trained 
using historical load data and weather data that influence electric power consumption (such as 
wind speed, precipitation, atmospheric pressure, temperature and humidity). In order to do 
this, a V-shape temperature processing model is proposed. 
In this paper, two techniques for STLF based on ANN are presented. These techniques are 
NARX and RBF which are selected for their reliability, simplicity, ability to construct 
nonlinear relationships between variables, high accuracy limits and low percentage error. 
Section two of the paper presents the input data followed by Section three which presents the 
methodology. Results and discussions are presented in Section four followed by conclusion. 
The results from both methods are presented with emphasis on the percentage error indices. 
The input data implies weather factors such as the temperature, and humidity. The emphasis 
of this paper is to show that NARX and RBF ANN techniques can be used side by side with 
the existing method implemented by NEPCO for both summer and winter seasons. The 
proposed techniques NARX and RBF provide five days forecasting with high accuracy and 
reasonable relative error values in the range between 0.1-3.9% as it will be seen in section 4. 

II. INPUT DATA 

Weather factors including temperature, humidity, pressure, wind speed and precipitation have 
significant effects on the energy consumption patterns in any country. However, the 
temperature has a significant impact on the demand response [8]-[10]. In this paper, the data 
used in analysis is classified into: weather and load data. The hourly metrological data 
(temperature and humidity) is obtained from Jordan Metrological Department for September 
and August 2014, whereas the hourly load data in Mega Watts (MW) is obtained from 
NEPCO. The relation between both temperature and humidity with load is investigated via the 
correlation factor, which is an index describing two sets of data linked together. It may be 
positive or negative. For these two sets of data (x and y), the correlation factor between x and 

y ( y,xcorcoef ) can be calculated as [11]: 
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The correlation between temperatures (in Co) and humidity versus electric loads (in MW) for 
September 2014 is presented in Fig. 1 which shows the best fitted line and good correlation 
factors of 0.834 (load vs. temperature) and -0.766 (load vs. humidity) respectively.  

 
Fig. 1. Temperature and humidity versus electrical load in September 2014, a) temperature vs. load (correlation 

factor= 0.834), b) humidity versus load (correlation factor= -0.766) 
 

Similarly, the humidity in percent versus electric loads in MW in Jordan for January 2015 is 
shown in Fig. 2. The figure shows also a good correlation factor with a value of 0.727 for 
temperature and -0.511 for humidity which means that as temperature increases the load 
increases and as humidity decreases the load decreases. The dependence of load on weather 
variables varies between winter and summer, since the tendency to consume electricity varies as 
much in weekend days and special holidays. Fig. 2a and 2b show temperature and humidity versus 
electric load in January 2015 for five days (hourly). Hence the need to construct different 
forecasting models for each season becomes a necessity in order to achieve maximum 
accuracy, which will be shown later. 
 

 
Fig. 2. Temperature and humidity versus electrical load in January 2015, a) temperature versus load (correlation 

factor= 0.727), b) humidity versus load (correlation factor= -0.511) 
 

III. METHODOLOGY 

The input data that is used in NARX and RBF ANN techniques has been processed in a way 
to obtain the minimum percentage error. In the analysis, the actual hourly loads (in MW) as 
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well as the forecasted temperature and humidity for the next three and five days are used for 
STLF study. Several tests have been conducted to show the influence of the number of 
training days and the number of neurons variations on the normalized root mean square error 
values in both NARX and RBF for both summer and winter seasons. The analysis aims at 
showing the optimum number of training days and number of neurons that achieve the 
minimum percentage error. The ANN is used for solving complex problems; the artificial 
neurons are mainly characterized by: a) the input layer, b) the hidden layer where inputs are 
multiplied by weights and computed by mathematical functions to determine the activation of 
the neuron, c) the output layer and the output of the hidden layer (usually, the transfer 
function of layer neurons is linear) and d) The ANN that combines artificial neurons in order 
to process information. By adjusting the weights of the neural networks, the desired output 
from a specific input can be obtained. The process of adjusting the weights of the ANN is an 
iterative process which is called training. As mentioned earlier, two methods will be 
highlighted, NARX and radial basis neural networks. Both are different in architecture, 
activation functions of neurons and learning process. 
 

A. NARX Network 

In NARX network, the output is the forecasted load (in MW) as a function of the input 
variables that include temperature, humidity and the previous hourly load values. The NARX-
ANN model is described in (3): 

)nut(u),.....t(u),t(u),nyt(y),...,t(y),t(y(f)t(y  221                             (3) 
 
Where: y(t) is the next value of the dependent output signal which is regressed based on 
previous values of the output signal. u(t-1) is the previous values of an independent 
(exogenous) input signal. NARX model can be implemented by using a feed forward neural 
network to approximate the function f [12]. The transfer function of the hidden layer neurons 
is another factor that is taken into account. In our analysis, it is found that the best results can 
be obtained from sigmoid function. For the NARX network, several learning algorithms are 
used for different purposes. Gradient descent with momentum and adaptive learning rate back 
propagation (traingdx) is used as a learning algorithm. Fig. 3 shows a simple architecture of 
NARX network. 

 

 
Fig. 3. Simple architecture of NARX network [11] 
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B. RBF Network 

The output of RBF neural networks is the predicted dependent load (in MW). In this method, the 
handling of the input of the neuron is different from other networks, where the net input to 
the RBF transfer function is the vector distance between its weight vector and the input vector [7]. 
The distance function used is the Euclidean distance weight function multiplied by a bias. There are 
two types of RBF basis networks. In the first type, the number of neurons is increased iteratively 
until the squared error in the training process becomes lower than an error goal. However, the 
second type is the exact radial basis design that produces zero errors at training and produce 
neurons as much as input vectors. Exact RBF network is used in this paper. MATLAB is used to 
construct and analyze the two types of neural networks, and to plot data and results. Fig. 4 shows a 
simple architecture of a radial basis network. 

 

 

Fig. 4. Simple architecture of radial basis ANN 
 

As mentioned earlier, two types of networks are employed. In each type, there are different 
parameters to be adjusted. For both techniques, the parameters are related to the architecture of the 
ANN and to the way the network operates. In NARX model, the number of neurons is changed 
then the network is trained and the error is obtained consequently. The transfer function and the 
logsigmoid function were adjusted to give relatively low error. In RBF model, the spreads are 
changed and the error is measured after the forecasted values are extracted. In order to evaluate the 
forecasting process for both models, four error indices were used: normalized root mean square 
error, mean absolute error, correlation and relative error indices:  

1) Mean square error (MSE) and normalized root mean square error (NRMSE) are given by: 
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2) Mean absolute error (MAE): 
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3) Correlation index: the correlation between the actual and the forecasted load was 
determined. Compared with the two previous indices, this index gives a more reliable 
indication about the way the forecasted load tracks the actual load in the load shape 
behavior.  

4) Relative error (Re) between two values: 
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where,  

iY
 
: Actual load value in MW for hour I, 


iY : Predicted load value in MW for hour I, 
n: number of samples (hours). 
 
In the NARX model, high distortion was seen at the beginning of the time series (first five 
samples for summer and ten samples for winter) due to the time delay parameter that was 
optimized in the model. This affects the error indices for the future readings. The first five samples 
are excluded from the analysis in order to minimize the error.  

IV. RESULTS AND ANALYSIS 

Due to significant variations in the typical daily load curves between summer and winter seasons 
in Jordan, the STLF was conducted for both summer and winter seasons individually. The results 
obtained from NARX and RBF ANN for both seasons will be highlighted in this section. 
 

A. Summer of 2014 

The NARX and RBF networks are examined based on the data of September 2014. Hourly data 
for working days was used for both training and testing. Hourly loads in MW and weather data 
based on temperature and humidity are employed. For each day, there were 24 samples and each 
sample represented an hour. 
Table 1 presents error indices obtained from both techniques as a function of the training days (3, 
5, 7 and 9). Table 1 shows that as the training days increase from three days to five days, the 
accuracy of the NARX decreases significantly before it increases again. The minimum NRMSE 
and MAE indices were observed on five days with values of 0.0395 and 66.90 respectively. The 
maximum correlation was also observed on five days with a value of 92.6%. The same response 
was observed with RBF bus error increases significantly as training days increase. Compared with 
NARX, a better response was seen on five days with the values of NRMSE and MAE of 0.0354 
and 59.9 respectively and correlation factor of 95.5%. 
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TABLE 1 

NUMBER OF TRAINING DAYS AND CORRESPONDING ERROR FOR NARX AND RBF FOR SEPTEMBER 2014 

Network Error index 3 days 5 days 7 days 9 days 

 

NARX  

NRMSE 0.0892 0.0395 0.0480 0.0569 

Correlation 0.92 0.926 0.8956 0.86 

MAE 174.65 66.9092 82.9 97.4 

 

RBF  

NRMSE 0.076 0.0354 0.0759 0.0707 
Correlation 0.948 0.955 0.7304 0.773 

MAE 137.81 59.9 124.36 116.0440 

 
 
Table 2 presents the NRMSE index as the function of the number of spreads and neurons for five 
training days in September 2014. In NARX network, the number of neurons was changed from 
three to 18 neutrons at fixed training days of five. The minimum error of 0.0395 was observed at 
three neurons. For RBF, the spreads was changed from five to 40 with minimum error of 0.0354 
that was observed at 35. This agrees with the observations made by some researchers such as 
Hawary and Syed [2], who declared that the minimum error can be obtained when the number of 
neurons equals the number of input parameters.  

 
 

TABLE 2 
NUMBER OF NEURONS AND CORRESPONDING NORMALIZED ROOT MEAN 

SQUARE ERROR FOR 5 DAYS TRAINING IN SEPTEMBER 2014 

RBF NARX 
Spreads NRMSE Neurons NRMSE 

5 0.1141 3 0.0395 
10 0.0484 6 0.0468 
15 0.0440 9 0.0472 
20 0.0529 12 0.04277 
25 0.0521 15 0.0527 
30 0.0456 18 0.0494 
35 0.0354 21 0.0607 
40 0.0471 24 0.0607 

 
 
Fig. 5 presents the forecasted versus actual loads for 72 hours between 14 and 16 September 2014 
based on NARX and RBF models. As shown in Fig. 5a, the real versus forecasted values based on 
NARX are in good agreement. By using RBF, the minimum load does not match the peak load, 
although it gives good agreement (Fig. 5b). 
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Fig. 5. Forecasted load (cross line) versus actual load (line), for 3 days (14-16 September 2014), a) using NARX, 

b) using RBF 
 

The actual versus forecasted load (in MW) as a scatter plot using two techniques is shown in Fig. 
6a and 6b, respectively. The results show a good correlation index with a value of 0.933 for 
NARX and 0.95338 for RBF. The figure also shows the periods of over or under estimation with 
respect to the actual load.  

 
Fig. 6. Scatter plot showing the forecasted versus actual loads (MW) for September based on a) NARX, b) RBF 

 

Finally, the actual versus forecasted daily loads based on NARX and RBF for three days between 
14 and 16 September 2014 are presented in Table 3. These days represent working days. The 
response in holidays was not considered. The relative error was in the range between -1.2% and 
1.53% for NARX and between -3.3 and 0.2% for RBF. Although the relative error of RBF was 
slightly lower during the first two days, it increased significantly over the NARX on the third day. 
It implies that NARX is more effective for long period forecasting than RBF model. The 
comparison between the forecasted and actual five days daily peak values obtained from NARX 
and RBF shows reasonable values for NRMSE, MAE and correlation indices as shown in Table 3. 
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TABLE 3 
ACTUAL DAILY MAXIMUM VERSUS FORECASTED LOADS (IN MW) FOR 14-18 SEPTEMBER 2014 

AND THE CORRESPONDING RELATIVE ERROR 

 1st day 2nd day 3rd day 4th day 5th day 

Actual 2420 2460 2430 2500 2450 

NARX 2396.232 2440.146 2421.458 2499.246 2405.785 

Re -0.00982 -0.00807 -0.00352 -0.0003 -0.01805 

RBF 2456.47 2458.973 2386.831 2356.791 2416.416 

Re 0.01507 -0.00042 -0.01776 -0.05728 -0.01371 

NARX vs. Actual (5 days hourly 
basis) 

NRMSE= 0.0455, MAE= 71.2357, 
Correlation= 0.9207 

RBF vs. Actual (5 days hourly basis) 
NRMSE= 0.0511, MAE= 73.0980, 

Correlation= 0.899 
 

B. Winter of 2015 

Similarly, NARX and RBF networks are examined based on the data of February 2015. Hourly 
data for working days was employed for both training and testing. Hourly loads in MW and 
weather data based on temperature are employed. For each day, there were 24 samples each of 
which represents an hour. Table 4 presents the error indices obtained from both techniques as a 
function of the training days (3, 5, 7 and 9). Table 4 shows that as the training days increase from 
three to nine days, the accuracy of the NARX decreases significantly. The minimum NRMSE and 
MAE indices were observed on nine days with values of 0.0356 and 60.46 respectively. Maximum 
correlation was also observed on nine days with a value of 98.35%. The same response was 
observed with RBF. Error decreases significantly as training days increase. Compared with 
NARX, a better response was observed on nine days with the values of NRMSE and MAE of 
0.0347and 59.2 respectively and correlation factor of 95.5%. 

TABLE 4 
NUMBER OF TRAINING DAYS AND CORRESPONDING ERROR OF NARX AND RBF IN FEBRUARY 2015  

Network Error Index 3 days 5 days 7 days 9 days 

 
NARX 

NRMSE 0.0892 0.0451 0.0452 0.0356 

MAE 0.92 73.4260 77.1780 60.4682 

Correlation 174.65 0.956 0.956 0.9835 

 
RBF 

NRMSE 0.076 0.0354 0.0346 0.0347 

MAE 137.81 59.9 61.2351 59.2272 

Correlation 0.948 0.955 0.983 0.981 

 
Table 5 presents the NRMSE index as a function of the number of spreads and neurons for 
nine training days in February 2015. In NARX network, the number of neurons was changed 
from two to 14 neutrons at fixed training days of nine. The minimum error of 0.0356 was 
observed at eight neurons. For RBF, the spreads was changed from five to 40 with the 
minimum error of 0.0347 that was observed at 35.  
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TABLE 5 
NUMBER OF NEURONS AND CORRESPONDING NORMALIZED ROOT MEAN 

SQUARE ERROR FOR 5 DAYS TRAINING IN SEPTEMBER 2014 

RBF NARX 
Spreads NRMSE Neurons NRMSE 

5 0.0363 2 0.0645 
10 0.0359 4 0.0539 

15 0.0365 6 0.0784 

20 0.0347 8 0.0356 
25 0.0347 10 0.0642 
30 0.0347 12 0.0533 
35 0.0347 14 0.0525 

 
Fig. 7 presents the forecasted versus actual loads for three days in February 2015 (4th, 5th and 
8th February) based on NARX and RBF models. As shown in Fig. 7a and 7b, although the 
error values obtained from NARX and RBF are close to each other, RBF has better 
performance in both maximum and minimum peaks except during the third day. NARX 
model shows high accuracy. A comparison between the results of the two models via a scatter 
plot between forecasted and actual loads is shown in Fig. 7a and 7b. As shown in Fig. 7a, the 
actual versus forecasted values based on NARX are in good agreement. By using RBF, the 
minimum load does not match the peak load although it gives good agreement.  

 
Fig. 7. Forecasted load (cross line) versus actual load (line) for 3 days (16-18 February 2015), a) using NARX, b) 

using RBF 
 

The actual versus forecasted load (in MW) as scatter plot using two techniques for winter is 
shown in Fig. 8a and 8b respectively. The results show a good correlation index with a value 
of 0.983 for NARX and 0.975 for RBF. Fig. 8 also shows the periods of over or under 
estimation with respect to the actual load. It gives an important indication on how NARX and 
RBF can either overestimate or underestimate the actual load. NARX shows a more tendency 
to overestimate the loads (Fig. 8a), while RBF does not show any tendency from this point of 
view (Fig. 8b). 

0 10 20 30 40 50 60 70 80
1000

1500

2000

2500

3000
a

Time series (in hours)

Lo
ad

 in
 M

W

 

 

0 10 20 30 40 50 60 70 80
1000

1500

2000

2500

3000
b

Time sreies (in hours)

Lo
ad

 in
 M

W

 

 

Actual load

Forecasted load

Actual load

Forecasted load



© 2016 Jordan Journal of Electrical Engineering. All rights reserved ‐ Volume 2, Number 1                              91 

 
Fig. 8. Scatter plot of the forecasted versus actual loads (MW) for February 2015 based on 

a) NARX, b) RBF 
 

Finally, the actual versus forecasted daily loads based on NARX and RBF for five days in 
February 2015 (4th, 5th, 8th, 9th and 10th February) is presented in Table 6. The relative error 
(Re) between the actual and forecasted was in the range between -1.59% and 0.83% for 
NARX and between -5.9 and 0.6 % for RBF. Although the relative error of RBF was slightly 
lower during the first three days, it increases significantly over the NARX in the fourth and 
fifth days. It implies that NARX is more reliable for long and short term forecasting than RBF 
model. The comparison between the actual and forecasted five days daily peak values 
obtained from NARX and RBF shows reasonable values for NRMSE, MAE and correlation 
indices.  

TABLE 6 
ACTUAL DAILY MAXIMUM VERSUS FORECASTED LOADS (IN MW) FOR WORKING DAYS IN FEBRUARY 2015 (4TH, 5TH, 

8TH, 9TH
 AND 10TH

 FEBRUARY), AND THE CORRESPONDING RELATIVE ERROR 

 1st day 2nd day 3rd day 4th day 5th day 
Actual 2571.871 2483.832 2627.765 2705 2735 
NARX 2568.508 2581.87 2595.973 2622.733 2646.735 
Re -0.00131 0.03947 -0.0121 -0.03041 -0.03227 
RBF 2608.698 2498.965 2601.758 2594.467 2595.311 
Re 0.014319 0.006092 -0.0099 -0.04086 -0.05107 

NARX vs. Actual (5 days hourly basis) 
NRMSE= 0.0426, MAE= 73.1901 and 

Correlation= 0.997 

RBF vs. Actual (5 days hourly basis) 
NRMSE= 0.0375, MAE= 63.2819 and 

Correlation= 0.975 
 

V. CONCLUSIONS 

The paper presents the STLF study for Jordan power grid. Two ANN approaches are 
implemented in the preparation of the STLF study for Jordan's case: NARX and RBF neural 
networks. The STLF for five days ahead was done for both summer and winter seasons. The 
input data implies the temperature, humidity. Four error indices are used to measure the 
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accuracy of forecasting which implies Re, NRMSE, MAE and correlation. The comparison 
between hourly actual and forecasted load readings shows a reasonable normalized mean 
square error (NMSE) with minimum values in summer of 3.9 % for NARX and 3.5% for 
RBF, and in winter of 3.5% for NARX and 3.47% for RBF. The results show that the 
minimum error is achieved by using 5 training days for summer and 9 days for winter. The 
comparison between the actual and forecasted five days daily peak values obtained from 
NARX and RBF shows reasonable values for NRMSE, MAE and correlation indices. The 
comparison between the two networks shows that NARX is more reliable than RBF for 
forecasting the maximum daily peak for few days ahead although RBF provides lower 
NRMSE. The new forecasting model improves the existing forecasting models that are 
implemented by electrical power companies in the country. It will help reshape the load 
response and enhance the efficiency. It will also improve the performance of the independent 
system operator (ISO) and reinforce the concept of optimum operation of any power system. 
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